
DD2448 Foundations of cryptography (krypto24)

Post-Quantum Cryptography Standardization
April 21, 2024

Abstract

The article discusses the motivation and goal of the post-quantum standardization
process, with a focus on the Module-Lattice-based Key-Encapsulation Standard (FIPS
PUB 203). The underlying Module Learning With Errors and Shortest Vector Problem
are outlined. Security and performance aspects as well as state-of-the-art attacks and
differences from the original CRYSTALS-Kyber scheme are discussed.

1 Standardization process

Over the last decade, there has been a substantial amount of research on quantum com-
puting. Quantum computers should not be seen as better compared to the classical ones,
rather they represent a completely a new computing model, where certain problems can
be solved far more efficiently.

With the potential advent of large enough quantum computers, the bit security of sym-
metric cryptography will be halved,1 but the problems that underpin public cryptography
today—integer factorization and discrete logarithms over both finite fields and elliptic
curves—will be solved using Shor’s algorithm in polynomial time.[8]

Even though the current quantum computers are still toy prototypes and function-
ally useful quantum computer is somewhere a few years away to impossible, in 2016 the
National Institute of Standards and Technology (NIST) started with Post-Quantum Cryp-
tography (PQC) standardization process. The goal is to standardize publicly disclosed
digital signature, public-key encryption and key-establishment algorithms that are avail-
able worldwide and are capable of protecting sensitive government information well into
the foreseeable future, including after the advent of quantum computers.[4]

Apart from the security, performance and adaptation considerations, the ambition is
to standardize at least two algorithms for each category—digital signature, public-key
encryption/key-establishment algorithms—and these algorithms should be based on dif-
ferent underlying hard problems in order to reduce the risk of leaving the world without a
viable standard, in case one of the problems would be broken.[6]

The long time anticipated for standardization, implementation, and adaptation of PQC
is the reason we started with the process well in advance of our expectations for the
construction of large quantum computer. The lengthy process was expected because of our
(1) limited ability to predict the performance characteristics of future quantum computers,
such as their cost, speed, and memory size, and (2) hardness to compare post-quantum
cryptosystems as they are based on completely different design attributes and mathematical
foundation.[5]

Furthermore, the infrastructure needs to be developed well before the quantum com-
puters are there, as we want the secrets compromised by quantum cryptanalysis to be no
longer sensitive.[5] This concern is expressed in the attack with a self-explanatory name:
The Harvest Now, Decrypt Later. When considering, that it took almost two decades
to deploy modern public key cryptography[4] and the transition to post-quantum cryp-
tography will probably not be a drop-in replacement, the companies should already start
enforcing cryptographic agility and create migration plans for moving to the post-quantum
cryptography.[5][1].

1Grover’s search algorithm gives a square root time boost for the problem of key search for AES and
3DES[8].

1 (6)



DD2448 Foundations of cryptography (krypto24)

2 Module-Lattice-Based Key-Encapsulation Mechanism

The report starts with a summary of the structure of the standard, followed by an expla-
nation of the underlying problems and a description of the construction. The security and
performance characteristics are discussed. Finally, the differences from CRYSTALS-Kyber
are stated and our conclusion is given.

2.1 Structure of the standardization document

The preamble sets the document into a context by clearly explaining the motivation and
defining the purpose, scope, and subject of the standard. To help standard adoption the
patent information and point of contact are provided. The standard briefly revisits the
context and describes differences from the 3rd round submission of CRYSTALS-Kyber.
Chapter 2 supports clarity by the definition of all used terms, acronyms, and definitions,
as well as an explanation of mathematical and pseudocode notation. In Chapter 3, the
overall picture and requirements for the ML-KEM are provided and key encapsulation
mechanism (KEM) is illustrated. Chapter 4 states the auxiliary algorithms. The essence
of the standard is Chapters 5 to 7. Chapter 5 describes the underlying public encryption
(K-PKE) consisting of thee routines Key generation, Encryption and Decryption. Finally,
in Chapter 6 the ML-KEM is presented in the form of three standardized algorithms Key
Generation, Encapsulation, and Decapsulation. The three sets of parameters standardized
by the standard – ML-KEM 512, ML-KEM 768, ML-KEM 1024 – along with associated
security categories are specified in Chapter 7. The security categories are provided as an
appendix.

2.2 Key Encapsulation Mechanism

The key encapsulation mechanism (KEM) is a set of algorithms to establish a shared
secret between two communication parties. This shared secret key, can then be used
for a symmetric-key cryptography. We illustrate the KEM with two parties Alice and
Bob: Alice uses Key generation algorithm to generate an encapsulation (public) key and
decapsulation (private) key. Then, Alice sends the encapsulation key to Bob. Bob runs
Encapsulation algorithm, which produces a shared secret SB (to be used by Bob) and
associated ciphertext, which is sent back to Alice. Alice obtains her version of shared
secret SA by running Decapsulation with the decapsulation key and obtained ciphertext.

2.3 Underlying Security Problem

The schema is essentially a Lyubashevsky, Peikert, Regev (LPR) encryption within the
Module Learning With Errors (MLWE) setting.[14]

The Learning With Errors (LWE) problem can be stated in two variants (1) search
and (2) decision version. The setting for both is the same. Then, given a modulus q,
uniformly distributed matrix A ∈ Zk×l

q and χ. Sample s ∈ Zl
q, e ∈ Zk

q from χ and compute
As + e = t. When given the A and t, the goal is to find the secret value s in the search
version and distinguish t from uniformly random in the decision version.

The plain LWE works with vectors of independent integers. As a consequence, O(n2)
of memory is needed to store the matrix A and the computation costs are O(n2).[9] High
storage and computation requirements led to the development of Ring Learning With Error
(RLWE), where we only need to store the first column of the matrix, as for the second
column we shift all elements a position down and negate the last element of previous column
(now on top). The added structure results in the storage requirement decreasing to O(n)

2 (6)



DD2448 Foundations of cryptography (krypto24)

and as the columns are no longer independent the Number-Theoretic-Transform can be
used for the multiplication with the final computational complexity of O(n log n).[13][9]

The Module Learning With Errors (MLWE) further builds on the RLWE by introducing
the module rank parameter k. In MLWE the matrix A can be thought of as built from k×k
matrices with the structure corresponding to RLWE. Therefore the natural requirements
are O(k2n) for storage and O(k2n log n). The reason to move from RLWE to MLWE is
motivated by more flexibility as the higher security level is achieved by increasing the
module rank k without changes in the underlying arithmetic. This enables more efficient
implementations.[9]

The LWE problems can be translated to problems on lattices (therefore the name of
the standard Module-Lattice-based). Lattice L is defined as a discrete additive subgroup
of Rn and the natural way of thinking about lattices is as periodic patterns of points in
a grid. The ML-KEM is specifically connected to the approximate version of the Shortest
Vector Problem (SVP). In the non-approximate version, the task is: Given lattice L, find
a non-zero v ∈ L, such that v is the shortest vector in the lattice. In the α-approximate
version, our goal is to find v ∈ L, which is maximally α-time larger than shortest vector.[11]

2.4 Construction

The construction is based on the IND-CPA2public key encryption K-PKE, which is then
turned into the IND-CCA23 key encapsulation mechanism ML-KEM using the Fujisaki
Okamoto transform (FO).[16]

The to-be-established shared secret is fixed to 256 bits. The underlying ring is is
R = Z[X]/(X256+1) and the module ranks are k = 2, 3, 4 corresponding to NIST security
categories 1, 3, 5. The integer modulus is fixed to q = 3329. The matrix A ∈ Rk×k

q is
pseudorandomly generated from random 256-bit string.4 Two secret vectors of polynomi-
als s, e ∈ Rk

q are sampled independently from the central binomial distributions χ with
parameters η1 and η2 to set appropriately to produce numbers relatively small to q with
high probability. The s represents the private key and the vector e is the error term. The
corresponding public key is pk = (A, t = As+ e).[6][16]

Next, the three top-level algorithms of ML-KEM will be explained together with the
K-PKE subroutines. We start with key generation. Both ML-KEM.KeyGen() and K-
PKE.KeyGen() takes no input and requires randomness. Firstly, the encryption (public)
and decryption (private) keys are generated (as explained in the previous paragraph) by
K-PKE.KeyGen(), which is invoked as a core subroutine in ML-KEM.KeyGen(). ML-
KEM.KeyGen() returns two keys (1) encapsulation key, which is exactly the encryption
key returned by K-PKE.KeyGen() and (2) decapsulation key, which is comprised from the
decryption key, encapsulation key, hash of the encapsulation key, and a random value used
for implicit rejection, in case decapsulation would not hold the correct result.

The encapsulation routine by ML-KEM.Encaps(ek), where the ek is the encapsulation
key, must firstly check (1) the length of the encryption key ek and (2) whether coefficients
of ek are from Zq. If both checks pass, the K-PKE.Encrypt(ekPKE, m, r) is called with
encryption key ekPKE and explicit randomness r to encrypt random value m ∈ Rq. The
encryption consists of sampling two vectors of polynomials r, e1 ∈ Rk

q and polynomial
e2 ∈ Rq with all coefficients of each polynomial chosen independently from χ. Then the

2Indistinguishability under chosen plaintext attack.
3Indistinguishability under chosen ciphertext attack.
4Therefore only the string needs to be transmitted as opposed to the whole matrix

3 (6)



DD2448 Foundations of cryptography (krypto24)

ciphertext c is computed as (remember, that t is the part of public key):

c = (u, v) = (rA+ e1, rt+ e2 + ⌊q/2⌉ ·m) ∈ Rk
q ×Rq

The shared secret K is derived from m and the encapsulation key ekPKE via hashing.
The ML-KEM.Encaps returns the shared secret together with the resulting ciphertext c.

The last missing piece is the decapsulation routine ML-KEM.Decaps(c, dk), taking
ciphertext c and decapsulation key dk as input. The routine must start with two checks (1)
the length of the ciphertext c and (2) the length of the decapsulation key dk. If both checks
pass, the core consists of parsing the components of the decapsulation key, specifically the
decryption key, encryption key, hash of encryption key, and implicit rejection value. The
ciphertext is decrypted into m′ using the K-PKE.Decrypt(dkPKE, c) with dkPKE being
the decryption key and c the ciphertext. K-PKE.Decrypt starts by decompressing the
ciphertext, then computes the intermediate value

w = v − us = [rAs+ re+ e2 +m]− [rAs+ e1s] = m+ re+ e1s+ e2

The values of r, s, e, e1, e2 are small relative to the transmitted message m (where all
coefficients are scaled up). Therefore the message m can be recovered from w by rounding
each coefficient of the polynomial w module 2. Finally the m is re-encrypted into ciphertext
c′ and compared with received ciphertext c. If the values of c and c′ differ the algorithm
returns a value corresponding to the hash of ciphertext together with implicit rejection
value. Otherwise, the shared secret derived by hashing from message m is returned.

2.5 Security

The security of ML-KEM, more precisely the K-PKE is based on lattice cryptography,
which has been studied for decades. It is essentially connected to the approximate versions
of SVP with larger factors, which we expected not to be NP-hard (as is the case for smaller
factors), but still believed to be computationally hard.[11]

The security proofs for the employed FO transform hold tightly in the Random Oracle
Model (ROM) and non-tightly in the Quantum Random Oracle Model (QROM). But
under other natural assumptions, ML-KEM may also achieve tight security reduction in
the Quantum Random Oracle Model (QROM).[6]

Currently, the best known way to break the ML-KEM is by breaking the underlying
MLWE problem. Therefore finding the solution for the noisy linear system. The attacks
are classified into three categories primal, dual, and hybrid (a combination of the previous
two).[3]

The primal attack runs the lattice reduction algorithm. The algorithm employed for this
is BKZ, which calls a subroutine to solve the instances of the Shortest Vector Problem.
For solving the shortest vector problem, two approaches – enumeration and sieving –
are possible. Currently, sieves achieve better results, with the state-of-the-art sieve being
bgj1−sieve.[7] By analyzing the heuristically selected attack parameters, we can conclude,
that for ML-KEM-512 the resulting complexity is the same as solving the SVP problem in
lattice of dimension 400.[3]

The dual attacks leverage the structure of the dual lattice5 to solve the underlying
lattice problem. These attacks are far more complex to understand, but it turns out, that
there are tricks, which make these attacks currently a little bit faster than the primary
attacks.[3][15]

5For a given lattice, its dual lattice consists of all vectors, that are orthogonal to all vectors in the
original lattice. Essentially, it’s a lattice of all the vectors perpendicular to the original lattice.

4 (6)



DD2448 Foundations of cryptography (krypto24)

Recently an article stating a substantial improvement in the problem of solving the SVP
on quantum computers was published.[10] The article explicitly states, that the current
version is not able to break the ML-KEM implementation. Also, the article is very recent
and was not opposed by security experts.6

2.6 Performance

The ML-KEM provides good performance on both x86-64 with AVX2 extension and ARM
Cortex-M. The ML-KEM is even comparably fast (if not faster) when compared with to-
day’s elliptic curve cryptography.[2] The ML-KEM is also suitable for use on constrained
devices as can be observed from the PQM4 results.[12] When implemented without pro-
tections to side channels, the implementation uses less than 4KiB of RAM and less than
20KiB of storage for code.[6]

Both public key and ciphertext sizes are on the order of thousand bytes, therefore a few
magnitudes larger, than sizes used by today’s elliptic curve cryptography.[2] However the
sizes should still be acceptable for most applications.[6] Standardization of both the ML-
KEM based on CRYSTALS-Kyber and ML-DSA based on CRYSTALS-Dilithium, which
share the same computational platform, provides an important advantage for the software
and hardware implementations. Also, the ML-KEM performs only the integer arithmetic,
with floating point arithmetic explicitly disallowed. This makes the implementation less
prone to errors.[16]

The NIST also concludes, that all structured lattice finalists, can be substituted in
existing protocols with relatively small or no cost.[6] This can be also observed as the
PQXDH version of Signal protocol, as well as PQ3 introduced by Apple (based on Signal
protocol) are based on the same CRYSTALS-Kyber scheme. The PQ3 also shows the fea-
sibility of forward secrecy using periodic re-keying, which is done about every 50 messages
due to the size of the keys.

2.7 Differences from CRYSTALS-Kyber

The main differences from the 2018 proposal for CRYSTAL-Kyber compared to the FIPS
203 proposal can be summarized in four parts. First, the integer modulus q has been
changed from 7681 to 3329. Secondly the ML-KEM.Encaps and ML-KEM.Decaps algo-
rithms in the current specification use a different variant of the Fujisaki-Okamoto trans-
form than the third-round specification. Specifically, ML-KEM.Encaps no longer includes
a hash of the ciphertext in the derivation of the shared secret, and ML-KEM.Decaps has
been adjusted to match this change. As this standard requires the use of NIST-approved
randomness generation, this step is unnecessary and is not performed in ML-KEM. The
current specification includes explicit input validation steps that were not part of the third-
round specification.

3 Conclusion

The ML-KEM is a very fast lattice-based scheme for establishing secret over a public
channel. The security is based on the hardness of the MLWE problem which is in turn
based on the hardness of the SVP problem. Its keys are bigger than those of pre-quantum
schemes, but small enough to be used in real-world systems.

6We personally cannot asses, the validity of the article, as we are missing a substantial amount of
knowledge about both lattice cryptography and quantum computers

5 (6)



DD2448 Foundations of cryptography (krypto24)

References

[1] Achieving Crypto Agility - with Rebecca Krauthamer and Greg Bullard from QuSe-
cure, August 2021.

[2] Kyber and post-quantum crypto, December 2021.

[3] Attacking lattice-based cryptography with martin albrecht, November 2023.

[4] NIST Computer Security Resource Center. Post-Quantum Cryptography. https:
//csrc.nist.gov/projects/post-quantum-cryptography, April 2024.

[5] NIST Computer Security Resource Center. Post-Quantum Cryptography. Call
for Proposals. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/Call-for-Proposals, April 2024.

[6] Gorjan Alagic, Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, et al. Status report on the
third round of the nist post-quantum cryptography standardization process. 2022.

[7] Martin R Albrecht, Vlad Gheorghiu, Eamonn W Postlethwaite, and John M
Schanck. Estimating quantum speedups for lattice sieves. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part II 26, pages 583–613. Springer, 2020.

[8] Ritik Bavdekar, Eashan Jayant Chopde, Ankit Agrawal, Ashutosh Bhatia, and Kam-
lesh Tiwari. Post quantum cryptography: A review of techniques, challenges and stan-
dardizations. In 2023 International Conference on Information Networking (ICOIN),
pages 146–151, 2023.

[9] Mojtaba Bisheh-Niasar. Introduction to lattice-based cryptography. the case study of
kyber, September 2022.

[10] Yilei Chen. Quantum algorithms for lattice problems. Cryptology ePrint Archive,
2024.

[11] Joel GÃ¤rdner. Lattice cryptography, 2024.

[12] Matthias J Kannwischer, Markus Krausz, Richard Petri, and Shang-Yi Yang. pqm4:
Benchmarking nist additional post-quantum signature schemes on microcontrollers.
Cryptology ePrint Archive, 2024.

[13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Cryptology ePrint Archive, Paper 2012/230, 2012. https:
//eprint.iacr.org/2012/230.

[14] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM (JACM), 60(6):1–35, 2013.

[15] MATZOV. Report on the security of lwe: Improved dual lattice attack. 2022.

[16] National Institute of Standards and Technology (2023) (Department of Commerce,
Washington, D.C.). Module-lattice-based key-encapsulation mechanism standard.
2023.

6 (6)

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230

	Standardization process
	Module-Lattice-Based Key-Encapsulation Mechanism
	Structure of the standardization document
	Key Encapsulation Mechanism
	Underlying Security Problem
	Construction
	Security
	Performance
	Differences from CRYSTALS-Kyber

	Conclusion

